The Nanoworkbench

Standard Application Packages

NanoProbing:

Current measurements inside SEM/FIB systems with the Nanoworkbench from Klocke Nanotechnik

Sample classes

NanoProbing at different samples:

- 1-probe measurements:
 - at samples with medium resistivity
 - on substrates with very low resistivity
 - the probe current is collected through the substrate
- **2-probe** measurements:
 - at samples with medium resistivity
 - laying on substrates with high resistivity
- **3-probe** measurements:
 - e.g. at Transistor structures
- **4-probe** measurements:
 - at samples with low resistivity
 - laying on substrates with higher resistivity
 - or for Transistor probing including ground electrode

Sample classes

Option Plasma Cleaner:

- <u>Necessary</u> to avoid hard contamination layers on the sample
- Not useful when samples can oxidize

Nanoworkbench Configuration:

- 1. Nanomanipulator equipped with: 1D-Nanofinger® as Scout
- 2. 4. Nanomanipulator equipped with: Current Probe tip if necessary
- Options: Source Measure Unit, software to plot the results
- Standard Software Package: Macro Executor, Live Image Positioning, Assistants, Sequencer

® Nanofinger is a registered Trademark of Klocke Nanotechnik GmbH

Process

Live Image Positioning: select target

1D-Nanofinger®: finds target

Current Probe: measures I/V curve

Probe tip classes

Different probe tips:

- Cantilever shapes with visible tip
- Wire shape in different stability,
 - optional with coating

Sharp tip with Pt- coating: r = 15 nm

1-probe measurements

I/V measurement at a single standing nanowire:

The probe tip touches a standing nanowire which then bends slightly

1-probe measurements

I/V measurement at a single standing nanowire:

Current flow: Source Measure Unit (SMU) → probe tip → nanowire → substrate → SMU

2-probe measurements

Nanotechnik =

I/V measurement at a chain of gold clusters:

- Length of chain is varied by changing the tip distance
- Resistivity depends on chain length

3-probe measurements

"Single Transistor characterization by Nano-probing to identify failures", TSMC

Current flow		Id (uA)	Ig (uA)	Is (uA)	Ib (uA)
Bad die	Ioff	-6.81	6.08E-5	1.83	4.99
	Isat	-113.66	-0.00523	106.45	7.06
Good die	Ioff	-1.27	2.04E-5	1.11	0.164
	Isat	-155.04	-0.00734	155.07	0.197

Table 1. It shows the current value of source, drain, gate, and well/substrate. Strong signals labeled with red indicate leakage existed between drain and substrate.

Figure 2 Device behavior is different between the PMOS transistors of bad and good dice. The device of bad die has higher Ioff.

4-probe measurements

I/V measurement at a nanowire with 4 probes (@RAITH):

• Nanowires:

Approach of 4 tips

• Measurement:

System calibration

Resistivity of the setup itself:

- COAX or TRIAX cable sets offer excellent measurement quality:
- Current flow:
 SMU → cable set → probe tip → probe tip → cable set → SMU

 Enabling sample measurement with very low serial resistance, even with only 1-2 probes.

Summary

Summary

- in-SEM/FIB NanoProbing is a Standard Application Package of the Nanoworkbench. Further nanorobotics manipulators can be added for using more than 2 tips.
- The Live Image Positioning module allows to direct the probe tip in XY to the target area just by mouse-click into the SEM image.
- The Nanofinger® operating as Scout allows a fast and safe tip approach.
- COAX or TRIAX shielded cable sets offer excellent measurement quality.

The Nanoworkbench

and its Application Packages

NanoProbing ...

is one out of several "Standard Application Packages" of our Nanoworkbench.

The Nanoworkbench enables the <u>hand-eye coordination</u> as used at Light Microscopes now in any SEM/FIB, together with automation of the SEM/FIB (@ZEISS, FEI, TESCAN)

At Light Microscopes it is natural for everybody to use tool sets like tweezers, knives, hooks, probes and several different measurement tools, so it is with the Nanoworkbench.

The Nanoworkbench

One Product for all applications

The Nanoworkbench Standard Packet includes:

- The basic application package "Nanomanipulation" and
- one additional "Application Package" out of:

Each application package includes a standard tool, a standard sample and pre-defined processes as source-code and origin for own projects.

The following set of modules for easy usage an application control:

The Standard Packet

Nanofinger® as Scout, guiding the Nanoworkbench Tools,

Live Image Positioning,

Assistants (Wizards),

Sequencer for automation, Macro Executor, Remote Control,

. . .

2 Nanorobotics Manipulators with docking stations

More information?

Please ask for the leaflet "Nanoworkbench"

® Nanofinger is a registered Trademark of Klocke Nanotechnik GmbH